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Kinematics of Deformation

+ Kinematics is the branch of
mechanics which deals with the
motion without reference to
force or mass

= Displacement is any change in
the configuration of the body 2

]

« Displacement vector of a point
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« Displacement vector of a point
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Displacement is associated
w with two phenomena:
- Rigid body motion Tmna]alinn
-+ - Translation
u - Rotation ﬁ
Vv _',y - Deformation
- Change in the distance Flntaﬂnn
between material points
u and/or shape of body
- Measured by strain vector Q
{or strain components) at
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Deformation of a Deformable

Body

Consider an elemental volume at a point, with
extent dx, dy, dz in the x, y, z coordinate direction.

Deformation of the elemental volume consists of;

= Linear (or extensional) strains - measuring

the change in the linear dimensions

* Shearing strains- |, oy e A T
measuring the A P =" ItH
: 3 -

change in the = ¥ ¥
angles between Lindr siraing
the sides i 1

Shearing sirains

Shearing strains

Deformation of a Deformable

Body

Deformation of the elemental volume consists of:

« Linear [or extensional) strains - measuring

the change in the linear dimensions

= Shearing strains - measuring the change in the
angles between the sides

* Curvature of oy L,
sides - usually /ﬁ_ ﬂ; ﬁi
small and is
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nEgIECl‘Ed Linear sirains

in a first [ Y _
approximation ﬂ_; ﬁ% .
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Shearing strains




Strain-Displacement Relanonships

* Consider the projections of the
elemental volume (at a point] i
on the coordinate planes E

s The projections of the two ¥
lines AB, AC on the xy plane is &
A1By, A€y where A By = dx,
A1Cy=dy

-

Strain-Displacement Relanonships
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If the displacements of point A, in the x .y f
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Strain-Displacement REIAHOnSIPS “+3—;‘E dy

If the displacements of point A, in the x .y
directions are u v

w2 dy
The displacements of .
points By and C; can
be approximated by

[ {u+ gy dx, veggdx), |
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Strain-Displacement Relanonships

The linear [extensional) strain in the x direction
change in the projected length
{on the x-axis) of element dx

original length

du
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Strain-Displacement REIationships

The shearing strain in the plane x-y is defined as
the change in the angle between AB and AC

?xy = shearing strain in the plane xy
=a Xy + D‘...?.x ur:%l' dy
For small displacement
gradients and small T - /
strains Vo2 gy i/
= tan o, 1 I a1
dylv V4t dx
v+ g dx —-v i T, i
= T j —adx—
dx + ax dx ur 24 d':'

Strain-Displacement RElanonships

The linear [extensional] strain in the x direction
change in the projected length
{on the x—axis) of element dx

) original length

Analogously, linear strains in y and z directions
are given by:
X u
=27 N\ "\
% .r")' ',r Zz v w
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Strain-Displacement REIanonships

The shearing strain in the plane x-y is defined as
the change in the angle between AB and AC

Txy = shearing strain in the plane xy

Xy yx

For small displacement
gradients and small
strains
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Strain-Displacement ReElanonshiips

The shearing strain in the plane x-y is defined as
the change in the angle between AB and AC

2 -

ny = shearing strain in the plane xy
L0 AU G ¢ us 1 dy
xy ~ “tyx :
For small displacement
gradients and small
strains

Strain-Displacement REIanonships
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Strain-Displacement Relanonships

us 1M gy

-] Analogously, the shearing
strains in the planes yz and
1] 2x are given by:
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Strain-Displacement RElanonships

Sign Convention
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¢ Linear (extensional] strains are positive if tensile

* Shearing strains are positive when they decrease
the angle between the sides
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Strain vector = {E}
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= Strains are defined at a point - an infinitesimal
volume element

= Linear (extensional) strains are associated with:
* Change in the volume of the element

= Change in the
shape [or form) i aE Boatd™ i .
of the element :&-r 4@1 4/@L-:
[elemental cube
is transformed Lineas siraing
into a
rectangular b_ /ﬂ_ /&_

parall‘ﬂlDPiP'Edl Shearing straing




Strain-Displacement Relanonships

* Linear [extensional) strains are associated with:
* Change in the volume of the element

s Change in the shape [or form| of the element
(elemental cube is transformed into a
rectangular parallelopiped)
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Linsas siralms

Shearing siraing

* Shearing
strains are
associated
with change
in the shape
{or form) of
the element

Analysis of Strain

* The equations for stresses can be used for
strains if the following substitutions are made:

Ex > Oy, Ey<$>0, £,$>0,
1 T £ dy z
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Analysis of Strain

# The transformation of strain components
|associated with coordinate transformations),
the determination of principal strains, principal
directions, maximum shearing strains and
octahedral strains follow similar procedures to

those used for stresses.
:|1-..--|"r'-""':"'l ﬁﬁ Ly ar
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¥ ¥ ¥

* The equations '
for stresses can

be used for

strains if the uum:mm-
following Yoy [
substitutions . f-; ;
are made: g / ; e

Shearing strains

Transformation of Strain

Components
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Directions

Solution of an algebraic eigenvalue problem
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Characteristic equation
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Principal strains and principal directions
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where 1, = first strain invariant
:l =gx+Ey +£2

Principal Sf; rains and Principal

Plane Strain

A plane strain state, parallel to x-y, is said to exist if:

L
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Plane Strain

ormation of in Com
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Plane Strain

Principal strains

CETRN =
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tan Ex_zy

Maximum shearing strain
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Mohr's Circle Representation
of Plane Strdain

Sign Convention

= Linear [extensional)
strain is positive
when tensile

= Shearing strain

= jf 1’,], is positive then

1
* 3 Ixy with € is counterclockwise,
taken as negative

1 5 ; -
* 3 Ixy with €y is clockwise, taken as positive

Mohr's Circle Representation

of Plane Strain

Mohr's Gircle Representation
of PlaneStrain




Strain Measurements

Strain Measurements

= Experimental Methods include:

= Experimental Methods include:

- Electrical resistance (bonded) strain gages

- measure extensional strains (extension /
contraction) of lines on the surface of a
member

Strain Measurements

- Itis customary to cluster three gages [strain
rosettes)
- Delta rosette [with gages spaced at 60°
angles)

= Experimental Methods include:

- Itis customary to cluster three gages (strain
rosettes)
- Rectangular rosette (with gages spaced
at 45° angles)

+ Photoelastic methods
« Holographic
* Moire’

* Speckle interferometry techniques

Strain Measurements

Strain Rosettes
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If £5.€p and £¢ are known, then &y, £y, Yxy
can be found.
¥
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Strain Compatibility

Relations

Strain-displacement relations have six strain
components (Ex, Ey, £z Yyz, Yzx, Yxy] and three
displacement components [u, v, w].
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Strain Compatibility

Relations

Strain Compatibility

The three displacement components cannot be
determined by integrating the six strain displace-
ment relations. Certain relations among the
strain components must exist in order to obtain
the three displacement components.
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Strain Compatibility

Relations

Shearing strains

Relations

For a plane strain case parallel to the x-y plane
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Strain Compatibility
Relations
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Thermal Strains

elongation of bar= L TL
where (¢ = coefficient of thermal
expansion

s Thermal strain= O T
but thermal stress =0
since there is no resistance
to the expansion Y

¢ For the case of combined L

mechanical and thermal
strains

t!:=E[r:—uT]

* Under uniform temperature change T°
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